
Different Types of Common
System Architecture
System architecture refers to the structure and design of a system, defining how its components
interact to deliver functionality. There are several common types of system architectures, each
suited to specific use cases, complexities, and business requirements.

 

1. Monolithic Architecture
Definition: The entire system is built as a single, unified unit where all components (UI,
business logic, data access) are tightly integrated.
Characteristics:

One large codebase.
Simple to develop initially but harder to scale and maintain.

Use Cases:
Small-scale applications.
Systems with low complexity and infrequent updates.

Examples: Traditional web applications built on early frameworks like ASP.NET or Ruby
on Rails.

2. Layered (Tiered) Architecture
Definition: Divides the system into layers (tiers), each with a specific role, such as
presentation, business logic, and data access.
Characteristics:

Commonly follows the 3-tier model: Presentation, Business Logic, Data.
Layers are loosely coupled.

Use Cases:
Enterprise applications with structured workflows.
Scalable web apps requiring clear separation of concerns.

Examples: E-commerce websites, ERP systems.



3. Client-Server Architecture
Definition: A system where clients (front-end devices) request services or data from a
server (back-end system).
Characteristics:

Centralized control (server) with multiple clients.
Suitable for distributed environments.

Use Cases:
File-sharing systems, email systems, or database-driven apps.

Examples: Web browsers communicating with web servers.

4. Microservices Architecture
Definition: A system design where functionalities are broken into small, independent
services that communicate over APIs.
Characteristics:

Highly modular and scalable.
Each service can use different technologies and be deployed independently.

Use Cases:
Large-scale, complex applications requiring agility.
Applications with frequent updates and diverse functionalities.

Examples: Netflix, Amazon, Uber.

5. Event-Driven Architecture
Definition: A system design where components communicate by producing and
consuming events, often using an event broker or bus.
Characteristics:

Reactive and real-time communication.
Decouples event producers from consumers.

Use Cases:
Systems requiring high responsiveness, like IoT applications.
Streaming platforms and financial transaction systems.

Examples: Stock trading platforms, Kafka-based systems.

6. Service-Oriented Architecture
(SOA)



Definition: An architecture style where system components are delivered as reusable
services, often exposed through a service bus.
Characteristics:

Services are loosely coupled.
Focuses on reusability and interoperability.

Use Cases:
Enterprise-level integration of legacy systems.
Scenarios requiring a focus on reusing business logic.

Examples: Banking systems, healthcare systems with HL7.

7. Serverless Architecture
Definition: A cloud-native architecture where the application is built on functions
executed on demand, with no need for server management.
Characteristics:

Pay-as-you-go model for execution.
Scales automatically based on demand.

Use Cases:
Lightweight, event-driven applications.
Systems with sporadic workloads.

Examples: AWS Lambda, Azure Functions.

8. Peer-to-Peer (P2P) Architecture
Definition: A decentralized system where nodes (peers) interact directly with one
another without a central server.
Characteristics:

Resilient and fault-tolerant.
No single point of failure.

Use Cases:
File-sharing systems, blockchain applications.

Examples: BitTorrent, Bitcoin.

9. Distributed Architecture
Definition: A system where components are distributed across multiple locations and
communicate over a network.
Characteristics:

High availability and fault tolerance.



Complex to manage and debug.
Use Cases:

Systems requiring scalability and high reliability.
Real-time data processing systems.

Examples: Hadoop, distributed databases like Cassandra.

10. Modular / Domain Architecture
Definition: A system composed of interchangeable, self-contained modules that work
together.
Characteristics:

Highly maintainable and adaptable.
Supports plug-and-play functionality.

Use Cases:
Systems requiring flexibility and adaptability.
Systems with evolving requirements.

Examples: IoT systems with modular sensors.

11. Component-Based Architecture
Definition: A design that organizes the system into reusable components that
encapsulate functionality and interact through interfaces.
Characteristics:

Encourages reusability and separation of concerns.
Components can be developed and tested independently.

Use Cases:
Software with reusable parts, such as UI libraries.

Examples: React.js, Angular.

12. Hybrid Architecture
Definition: A combination of multiple architectural styles to meet specific requirements.
Characteristics:

Tailored to the application's needs.
Can be complex to design and maintain.

Use Cases:
Complex applications requiring diverse functionality.
Systems with varying workloads.



Examples: A system using microservices for core functions and serverless for auxiliary
tasks.

Choosing the Right Architecture
The selection depends on:

1. Scale of the Application: Small, medium, or large-scale.
2. Complexity: Single-functionality vs. multi-functional systems.
3. Performance Needs: Real-time processing vs. batch processing.
4. Future Growth: Scalability and modularity requirements.

Revision #1
Created 25 November 2024 16:05:42 by Admin
Updated 25 November 2024 16:11:16 by Admin


